Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola
(Guest Editors)

Volume 39 (2020), Number 3

Canis: A High-Level Language for Data-Driven Chart Animations

T. Ge', Y. Zhao', B. Lee?, D. Ren®, B. Chen?, Y. Wang'f

IShandong University, Qingdao, China
2Microsoft Research, Redmond, WA, United States
3University of California, Santa Barbara, CA, United States
4Peking University, Beijing, China

Abstract

In this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven
chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created
by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into
mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start.
The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across
multiple platforms. To demonstrate Canis’ expressiveness, we present a wide range of chart animations. We also evaluate its

scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance

on different platforms against D3.
CCS Concepts

* Human-centered computing — Visualization toolkits; Information visualization; Visualization systems and tools;

1. Introduction

Chart animations are an effective means of attracting people’s at-
tention and maintaining their engagement. It is easy to find chart
animations from leading journalism outlets, such as the New York
Times, the Guardian, and the Washington Post as well as from pop-
ular data visualization blogs, such as Flowing Data [Yau] and Vi-
sualizing Data [Kir]. Previous research shows that animated charts
are more exciting and engaging than static ones in the presentation
context, although they might be ineffective for some data analysis
tasks [RFF*08, APP10, BLIC19].

To help people craft compelling chart animations, a few highly
expressive keyframe tools (e.g., After Effects [Adob]) have been
developed. However, most of them require people to manually
specify the visual properties for each keyframe, which is a te-
dious and time-consuming procedure. As such, a few template-
based tools (e.g., DataClips [AHRL™ 16], Flourish [Ltd]) have been
proposed to lower the manual burden. They allow people to select
a template with pre-defined visualizations types (e.g., bar charts,
line charts) and animation effects (e.g., creation, cycling). Although
such tools improve the animated chart creation process, their ex-
pressiveness is limited by templates.

T Yunhai Wang is the corresponding author.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Declarative languages such as Vega [SRHH15] and Vega-
lite [SMWHI16] enable a concise specification of visualizations, but
they do not provide the ability for authoring chart animations. Al-
though D3 supports animation through transition, it requires the
designers to contend with how the charts should be evolved over
time. The recently proposed grammar of animated graphics, ggan-
imate [PR] alleviates this problem by encapsulating the design of
animation effects, but it is designed specifically for the statistics
software package R with limited animation effects. Furthermore,
the animations created by these tools are difficult to natively de-
ploy on different platforms, further limiting their applicability.

In this paper, we present a concise, declarative language, called
Canis, the first domain-specific language (DSL) to provide com-
prehensive support for constructing chart animations, which can
be rendered natively across multiple platforms. Our goal with Ca-
nis is to facilitate the easy creation of meaningful chart animations
while striking a balance between effectiveness and expressiveness.
In achieving this goal, we make the following three contributions.

First, we contribute a high-level grammar that enables declara-
tive specifications of data-driven chart animations. By leveraging
data-enriched Scalable Vector Graphics (SVG) charts, this gram-
mar can be applied to any charts created by existing chart construc-
tion tools. With Canis, designers can select marks from one or more
data-enriched SVG charts, (hierarchically) partition them into a set

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

<svg width="250" height="250">
<g>
<path id="marke"
ark path symbol"

{
"charts":
[{"source": "./donut.dsvg"}],
“animations": [
{
"selector": ".path",
"effects": [
{
"type": "wheel",
“easing": "easeInCubic",
1200

“duration":

}"...></path>

</g>
</svg>

input dSVG Canis spec

(a)

output

<svg width="240" height="430"> { "‘"

<g>

<rect id="marke"
cla:
datum="

P

</g>
<g>

<text id="mark21"
class=
datum="{}" ...>A</text>

</g>
</svg>

"charts": [{"source": "./stackBar.dsvg"}], =0
"animations": [120/
"mark rectangle symbol" {

"selector":
"grouping"
"'groupBy’

“.rectangle”,

‘class':'A",

‘series':'sl’',

‘value':'55"
...></rect>

lass",
"start after previous",

“reference"
"'groupin

} P
}- B
"effects": [{"type": "wipe bottom"}] "
3 i |

output

mark text axis-label"

input dSVG Canis spec

(b)

Figure 1: The example input dSVGs and Canis specifications for animating two different charts with different animation effects: (a) a donut
chart with the “wheel” effect and a bar chart with the “wipe bottom” effect. (Open this PDF in Acrobat Reader to view the animation.)

of mark units based on data attributes, and apply pre-defined or
customized animation effects to the mark units, with the control of
when the animation effects start. For example, Fig. 1(a) shows the
Canis specification that selects the SVG path element and applies
the “wheel” effect for the animated creation of a donut chart. (See
Section 4 for the detailed description of the Canis spec.)

Second, we present a Canis compiler (Section 5) that automati-
cally synthesizes Lottie JSON specifications, a popular animation
library [Aira], that can render animations natively on desktop, web
browsers, and any mobile devices. After parsing Canis JSON spec-
ifications, the Canis compiler performs build-bind-evaluate oper-
ations that build mark unit trees, bind specified animation effects
to each leaf node of the mark unit trees, and compute the starting
time of each animation effect. With such information, the compiler
translates the input specifications into the Lottie specifications with
a minimum size.

Lastly, we provide two forms of evaluation (Section 6). We il-
lustrate the expressiveness of Canis through a wide range of ex-
amples. We also evaluate the scalability of Canis by demonstrating
how our compiler reduces the size of output Lottie specifications
and comparing its rendering performances against D3 on different
platforms: Lottie web (desktop), Lottie native (mobile), Lottie web
(mobile), D3 (desktop), and D3 (mobile).

2. Related Work

Canis is related to research in interactive visualization systems for
authoring chart animations, visualization and animation toolkits,
and animation effectiveness.

2.1. Interactive Visualization Systems

A few interactive systems can be used for authoring chart anima-
tions, and they take a keyframe- or template-based approach. For
example, Adobe After Effects [Adob], one of the most graphically
expressive tools, uses keyframes to set parameters for motion, ef-
fects, audio, and many other properties. However, it is usually te-
dious and time-consuming to fine-tune multiple keyframe visual
properties and synchronize different animation effects for different

marks. On the other hand, other interactive systems such as Adobe
Stock [Adoa], Flourish [Ltd], and DataClips [AHRL" 16] provide
data-driven templates to enable the easy creation of chart anima-
tions. Because they rely on pre-defined templates, it is hard to cre-
ate novel expressive animations with such systems.

2.2. Visualization and Animation Toolkits

A complete review of the approaches to visualization authoring is
beyond the scope of this paper. We refer the reader to Grammel et
al.’s survey [GBTS13] and focus our discussion on programming-
based approaches for authoring visualizations. Since the pioneering
work of Wilkinson on The Grammar of Graphics [Wil99]in 1999, a
variety of grammars have been developed for specifying visualiza-
tions. They can be categorized into low-level and high-level gram-
mars. Low-level grammars such as Protovis [BH09], D3 [BOH11],
and Vega [SRHH15] are more expressive and thus have been
widely used for creating explanatory and highly customized visu-
alizations. However, they involve a steep learning curve because
everything has to be specified at a low level. In contrast, high-level
grammars such as ggplot2 [Wicl0] and Vega-Lite [SMWHI16] are
easier to learn but less expressive. Such grammars allow authors
to generate visualizations with concise specifications, where the
omitted details are filled by smart default values. In a similar spirit,
Canis allows authors to create chart animations with concise, high-
level specifications.

The popular websites and mobile apps leverage animation to im-
prove user experience as well as to attract people’s attention and
maintain their engagement, and many UI animation libraries have
been developed [HEN]. To build high-quality expressive anima-
tions with these libraries, authors need to tune low-level animation
properties and synchronize multiple instances. In contrast, some
declarative libraries (e.g., Qt Quick [RZ10]) support a high-level
specification of animations and transitions. However, all of these
libraries are targeted for the animation of general visual elements,
rather than data-driven visual marks in visualizations. As such, it
is highly tedious and time-consuming to create animated visualiza-
tions based on data using these libraries.

Although scarce, there have been research efforts on visual-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

ization libraries to facilitate the authoring of animated visualiza-
tions. D3 [BOH11] provides a transition operator for implement-
ing animated transitions between selected visual elements. Star-
dust [RLH17] leverages GPU to significantly improve the render-
ing performance while providing a similar API as D3. While these
tools enable authors to craft expressive animations, they need to
manually build the mapping between the properties of visual ele-
ments and the desired animation effects, which is a challenging and
time-consuming task.

The gganimate [PR], an extension of ggplot2 [Wic10], enables
authors to create an animation of multiple charts of the same type,
where each chart shows a single data subset. It is mainly used for
showing updates of data, but might not support several other ani-
mation types [HRO7, AHRL" 16].

Canis aims to balance the expressiveness and conciseness. On
the one hand, it is a high-level grammar and uses a portable JSON
syntax for specifying animated visualizations like Vega-Lite. On
the other hand, Canis allows authors to customize animation ef-
fects for creating highly expressive animations. It not only covers
all types of animations provided by DataClips [AHRL™16] but also
supports any chart created by existing visualization tools. Since all
specifications are compiled to Lottie JSON specifications, which
enables the animations to be used as easily as static images.

2.3. Animation Effectiveness

The earlier work by Tversky et al. [TMBO02] suggests that chart
animation is attractive in presentations, but might not be as effec-
tive as the static chart in some data analysis tasks. Archambault et
al. [APP10] evaluate the effectiveness of animated dynamic graphs
in mental map preservation, while Robertson et al. [RFF*08] and
Brehmer et al. [BLIC19] evaluated the effectiveness of animated
scatterplots for trend visualization. All results show that animation
is still preferable in some data analysis cases.

To help people better perceive changes during animated chart
transitions, Heer and Robertson [HRO7] developed a taxonomy of
animation transition types and contributed guidelines for crafting
animated transitions between statistical graphics. Afterward, differ-
ent aspects of animated transition design have been studied. Drag-
icevic et al. [DBJ*11] investigated the temporal distortion of ani-
mated transition and found that slow-in/slow-out outperforms other
techniques. Chevalier et al. [CDF14] studied the staggering strat-
egy, which incrementally delays the start times across the moving
elements to reduce occlusion, and found that the staggering strategy
has negligible or even negative influences on multiple objects track-
ing performance. The Canis design strives to follow the guidelines
and lessons from these research when relevant, e.g., when handling
the input of multiple charts with animated transitions.

3. The Canis Design

In this section, we first introduce the design goals of Canis, and then
briefly describe the input SVG and output specification of Canis.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

3.1. Design Goals

With the goal of providing comprehensive support for constructing
chart animations, we settled on the following three design goals
(DGs) for our chart animation specification language. Here, we as-
sume that authors have knowledge about the data patterns and the
desired story to be presented.

DG1: High-level Specifications. D3’s transition operator provides
a way to produce expressive chart animations by manipulating
the interpolation of visual marks over time. However, it is time-
consuming and tedious to create expressive animations by manipu-
lating such low-level details. Instead, Canis decouples specification
from implementation and enables concise, high-level specifications
of expressive chart animations.

DG2: Meaningful Partitions and Sequencing. Since data is en-
coded by visual marks, conveying data patterns with animations
requires to effectively organize visual marks for ordering anima-
tion sequences. Inspired by the partition operator of data illustra-
tor [LTW™* 18], Canis treats all data-encoded marks as one unit and
partitions it into a set of elementary mark units in terms of data at-
tributes. Mapping each unit to one time interval facilitates a mean-
ingful ordering of animation sequences.

DG3: Cross-platform Deployment. Being able to natively run an-
imations on different platforms improves their applicability and
utility. Thus, to make it easier for developers to create chart anima-
tions targetting multiple platforms including Android, i0OS, Win-
dows, and Web, we compile Canis specifications into widely-used
animation specifications (i.e., Lottie JSON files [Aira]).

3.2. Data-enriched SVG

A chart animation shows changes of visual marks over time for
conveying data patterns of interest. By taking SVG charts as the
input, Canis can be agnostic to the visualization authoring libraries
and tools. However, using SVG information alone is typically not
enough to characterize all data patterns with animations, since it is
usually not easy to directly extract accurate data values from the
marks [HA14]. To effectively generate meaningful animations, Ca-
nis uses a data-enriched variant of SVG (dSVG)' that embeds the
source data into the SVG chart, allowing the Canis renderer to use
this information during the generation of the animation.

Specifically, dSVG adds three properties “id,” “class,” and “da-
tum” for each mark. The first two properties provide the index and
SVG element type (e.g., rect, circle, path) of the mark, while the
“datum” property contains the associated data. Fig. 1 shows two
examples of dSVG files, where these additional properties are high-
lighted in bold.

T All SVG charts created by D3, VEGA, and Charticulator can be easily
converted into dSVG files with our dSVG generator, which is available at
https://canisjs.github.io/marker.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

3.3. Lottie

To achieve DG3, we define the output Canis specifications as Lot-
tie JSON files. Lottie [Aira] is an open-source library developed by
Airbnb that parses After Effects animations into a JSON file and
renders them in real-time on Android, iOS, Windows, and Web.
Hence, it enables engineers to effortlessly incorporate rich anima-
tions created by designers into their products without painstaking
efforts of re-writing them. Moreover, the Lottie JSON files can be
further edited by different tools, such as Lottie Editor [Airb] and
Keyshape [Key]. However, Lottie works only with After Effects,
which inherently does not support data-driven animations. By ex-
porting Canis specifications as Lottie JSON files, Canis uses Lottie
to render animations in different platforms.

4. The Canis Grammar

Canis is a high-level declarative language that allows describing
expressive chart animations. To meet DG1, it provides a novel high-
level grammar that abstracts low-level details by directly specifying
animation effects to selected marks.

A Canis specification describes how to animate given charts with
a sequence of well-defined animation units, we call aniunits, and an
optional view composition operator facet:

Animation := (charts, aniunits, facet). (1)

Based on the previous studies [AHRL" 15], we assume that each
animation unit consists of four components: timing, mark se-
lector, mark grouping operator for partitioning marks to specify
keyframes, and animation effects imposed to the selected marks.
In this way, the animation unit for input SVG charts can be speci-
fied via a quadruple:

aniunit := (timing, selector, partitioner, ef fects), (2)

where the detail of each is described below. Note that timing, par-
titioner, and effects are all defined in terms of data attributes and
thus we need to enrich the input SVG charts with data.

4.1. Timing

The timing component is to control when an animation starts and
how the marks are performed in a staggering or staging man-
ner [CDF14]. It consists of two attributes: reference and delay.
The reference value is either “start with previous” or “start after
previous” that determines if this animation unit starts at the same
time with the previous unit or after. The delay attribute specifies
the number of milliseconds before the animation of this unit starts,
which is defined as:

delay := constant|(field, minDelay), 3)

where minDelay is the minimum delay for the mark with the small-
est value of the corresponding quantitative attribute field. The de-
lays of the other marks are obtained by linear interpolation based
on the attribute values. The default values of these two attributes
are “start with previous” and 0, respectively.

4.2. Mark Selector

Given the data-enriched SVG charts, the marks to be animated are
selected by using the W3C Selectors API [EBR14]. For example,
with “selector”: “.bar", all bars are selected from the input charts.
In line with D3 [BOH11], this operator also supports conditional
selections and sub-selections. If marks cannot be found, the cor-
responding animation unit will be ignored. Note that marks refer
to all visual primitives shown in charts such as axis grid and tick
marks, not only the data-encoded graphical marks.

4.3. Mark Partitioner

The selector can select multiple types of visual marks to be ani-
mated and the sequencing of different types of marks can be spec-
ified by using the timing parameters. If the number of marks of the
same type is one, this mark is the elementary unit for animation;
otherwise, the marks of this type need to be partitioned into a set
of elementary units. Based on such units, we define keyframes by
mapping each unit to one keyframe and change the mark properties
of this unit in the corresponding time interval, while the other units
remain constant.

To generate meaningful partitions and sequencing (DG2), our
mark grouping operator groups marks in terms of data attribute:

grouping := (timing, groupBy, sort), ()]

where the timing parameters adjust the order between mark units
and the groupBy string denotes a data attribute or the data index id
for grouping. By default, a categorical or nominal attribute is used
for this operation. Taking all marks as a whole, applying this oper-
ator results in an internal two-level mark unit tree, where each leaf
node corresponds to a mark unit. Note that if the reference of the
timing parameter is specified as “start with previous,” all partitioned
units will be shown simultaneously as a whole.

With a nested partition, a multi-level mark unit tree can be
formed. Fig. 2 shows an example, where the marks are first grouped
by the Surface attribute, then by the Odor attribute, and then fi-
nally by the IsEdible attribute. In this way, a four-level mark
unit tree is formed, and each leaf node consists of one or multi-
ple dots in the same color as shown in Fig. 2(c). Namely, this an-
imation has seven keyframes, where the dots of the fifth and sixth
frames have the same values (Fishy and Smooth) for the Odor and
Surface attributes.

If the groupBy attribute is not data index, the sort operator can
be used to specify the animation order of the mark units by their
unique values:

sort := order([valuer, values, - - -]).
Otherwise, the sort operator can be defined as:
sort := (field, ordering),

where the field is one data attribute; ordering can be descending
or ascending. If the sort operator is not specified, the groups are
ordered in terms of the corresponding data index.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

IsEdible M Edible M Poisonous {
“selector": “.dot", All dots
"grouping": { groupBy
“groupBy": "Surface", Surface
O "reference": "start after previous",
Smooth $
o ===. .g%‘ "grouping”: { Scaly Smooth R
Q "groupBy": "Odor", Odor
g "reference": "start after previous",
5-; "grouping": { Anise Fishy Foul Spicy Fishy Foul 3
" - ible" groupby
Scaly o groupBy": "IsEdible", P
33.2.3 .a. "reference": "start after previous", IsEdible
} Edible Poisonous Edible Poisonous Edible Poisonous Poisonous
}
Ani Fish Foul Spi)
nise ishy oul picy “effects": [{ "type": “fade" }] :'... ?:. & ..o
L !
Odor } L £ %
(a) (b) (c)

Figure 2: Specification for animating the faceted dot plot with a nested partitioning: (a) input scatterplot encoding three variables
(Surface, Odor and IsEdible); (b) Canis specification where three variables used for the nested partitioning are highlighted; and

(c) mark unit tree for partitioning the marks into keyframes.

4.4. Animation Effects
Each animation unit can have one or multiple animation effects:
ef fect := (timing, type, channel, easing, duration). (5)

The type specifies an animation effect that is applied to the se-
lected marks: Canis currently provides six types of animation ef-
fects: “fade,” “wipe,” “circle,” “wheel,” “grow,” and “magic move.”
Different effects correspond to different visual channels of the se-
lected marks, for example, “fade” corresponds to the opacity and
“grow” to the height. For achieving such effects, we pre-define how
these channels change for each effect.

Fig. 1 illustrates how three different effects change the visual
properties of different marks. Besides these effects, users can cus-
tomize the effects by setting rype as “custom” and directly defining
how the value of the visual channel should change from one value
to another by using a triple:

attribute := (channel, from,to),

where channel refers to the visual channel like height or opacity,
and from and to are the two transition values.

In addition, we introduce an effect we call “magic move” [Kis15]
for morphing between two SVG visualizations to achieve smooth
animated transitions. Here, the input charts must consist of multiple
SVG charts rather than a single chart and all types of marks are
animated with this effect. If users select several types of marks to
be animated with specific effects, the other marks will be animated
with the effect “magic move,” which has the same time duration
with the user-specified effects. Note that the multi-staged transition
suggested by Heer and Robertson [HRO7] can be implemented by
adding more intermediate SVG visualizations.

SVG Mask-based Effects. Although most animation effects can
be specified by changing mark properties, some effects cannot be
easily produced by directly manipulating mark channels. For ex-
ample, the “wipe bottom” effect shown in Fig. 3(a) need to change
y position and height of the rectangle, while the same effect is hard
to generate for Fig. 3(b), because the mark wedge defined by the
SVG path element does not have the height attribute. Although it is

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Effect wipe bottom wipe bottom
mark <rect y=24 height=24 mark <path d="..."
(rect) mask="url(#mask1)"... /> (wedge) mask="url(#mask1)"... />
<mask id="mask1"> <mask id="mask1">
mark e aee
with <rect height=24 ... /> <rect height=24 ... />
mask </mask> </mask>

"attribute":
mark ' },{
“attribute": "height", "from": 0, "to", 1

}

need complex computation
for “d” attribute

« i

mask vattripute": "height", "from": 1, "to", @ "attribute": "height", "from": 1, "to", @

} }
(a) (b)

Figure 3: Implementation the animation effects by using mask at-
tributes (a,b), highlighted in bold. (a) using one mask attribute al-
lows us to achieve the “wipe bottom" effect instead of using the
two attributes; and (b) for the marks defined by SVG path element,
using the mask attribute allows us to achieve the animation effect
easier than by using mark attributes.

possible to achieve such effects by using low-level path attributes,
it is complicated and inefficient.

To address this issue, we define SVG masks for such marks and
use their attributes to generate desired animation effects. In Fig. 3,
the “wipe bottom” effect is implemented by only using the mask’s
height attribute. Note that such a mask-based implementation is not
accessible to users, and the grammar for customizing animation
effect is based on the mark attributes rather than mask attributes.

Easing and Duration. Given the specified effect, easing indicates
the easing function used to change the corresponding mark prop-
erty over time, while duration controls the length of the animation
effect. It can be specified as either a constant duration for all marks
or constant speed. For the latter one, the duration is defined as Eq. 3,
where the minimum duration and an additional quantitative data at-
tribute are specified. The duration of each mark is then computed
by linear interpolation in terms of the given data attribute.

4.5. View Compositor

To facilitate side-by-side comparison, our specification also allows
for setting up multiple-view animation by introducing the facet

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

operator. It produces a trellis plot by assigning charts to different
views with the signature:

facet := (orientation, views).

Orientation indicates the layout direction of views (i.e., vertical
(row) or horizontal (column)) and views is a list of views, where
each view specifies a set of chart ids as the input. By default, each
view has the same number of input charts: the same animation unit
is applied to the selected marks of the same type in each view.

5. The Canis Compiler

Taking one or multiple static charts as input, the animated visual-
ization conveys the changes of mark visual properties over time,
for all marks. In doing so, there are two challenges in obtaining the
corresponding status of the visual properties of each frame. One
challenge is posed by potential mistakes in the specification, like
some improper data attributes mapped to animation properties. The
other is that storing the status of the changed visual properties of
all marks of each frame will result in high memory costs, which
will affect the rendering performance. Even only storing keyframes
can be too large for visualizations with a large number of marks or
complex graphical elements.

To overcome these challenges, the compiler generates the out-
put Lottie specification in five distinct phases: parse ingests the
JSON specification; build-bind-evaluate constructs a mark-unit tree
for each animation unit, binds the animation effect to leaf units at
proper time, and computes the necessary internal representations;
and translate generates the output Lottie JSON specification for
achieving DG3.

5.1. Parse

The parse step produces a complete specification by applying rules
crafted to produce valid animations [TMBO02]. Specifically, if the
animation parameter is assigned an invalid value or unspecified,
it is replaced by the default value. For example, if a quantitative
attribute is used for mark partitioner (see Eq. 4), the attribute is
binned into a small set of data ranges and the partitioning is based
on these ranges. The above-mentioned effect of “magic move” will
be re-defined by the “custom ” effect, where the from and to values
are extracted from the corresponding SVG marks. For each anima-
tion unit, the compiler will check if there is any animation effect
left, otherwise, the unit will be removed.

5.2. Build-Bind-Evaluate

Once a specification is parsed, our compiler analyzes it to collect
the necessary information for rendering the chart animations in
each view with the steps build-bind-evaluate. Rather than storing
the mark status at each frame, we build an animation keyframe ta-
ble with each row describing when a specific animation effect is
imposed on one mark and how long this effect lasts. However, stor-
ing all information into such a table is redundant in two ways: (1)
marks that belong to the same group or even different groups might

be assigned the same animation effects and (2) multiple animation
effects might involve the same visual channels and thus it is unnec-
essary to store the visual channel information in each row.

Therefore, we decompose the animation keyframe table into
three additional tables: mark unit table, animation effect table, and
mark channel table. The animation keyframe table consists of four
columns: unitlD, effectID, start time, and duration, while the mark
unit table defines the relationship between unit and marks, with
unitID and markID columns. The animation effect table stores ef-
fect properties, such as effectID, channel type, from value, to value,
and easing type, while the mark channel table stores the marks’ vi-
sual channel values related to the specified animation effects. Fig. 4
shows the construction of these tables with a grouped bar chart.

Note that the duration of each effect is stored within each row
in the keyframe table not in the animation effect table, because the
duration of the same effect bound to different marks might be dif-
ferent if it is specified via the option of constant speed. Moreover,
if the groupBy attribute is data index, the mark unit table is unnec-
essary, because each group only contains a single unique mark.

Build. This phase first collects all related marks in each aniu-
nit with the selector operator and then partitions all the marks
into different units in terms of their groupBy attribute values. If
a nested partitioning is specified, a hierarchical mark unit tree will
be formed, where the internal nodes on each level correspond to
one groupBy attribute and each leaf node corresponds to one mark
unit. Fig. 4(b) shows a three-level mark tree built for the grouped
bar chart, where each mark unit contains two bars. If a unit con-
tains more than a single mark, we insert the unitID and their marks
as one row into the mark unit table.

Bind. This phase updates the animation effect table and mark chan-
nel tables by parsing the animation effect operator. For example,
if the effect “wipe left” is found, a new row recording the width
changing from 0 to 100% with a unique effectID will be inserted
into the animation effect table, and a new column with the widths
of all selected marks are added to the mark channel table. Suppose
there are [effects in one unit, we insert [rows for each unit into
the animation keyframe table by assigning the unitID, effectID, and
effect duration to the corresponding cells. Meanwhile, a list of /
effects is created and attached to each mark unit. By doing so, all
three tables are updated as shown in Fig. 4(c).

Evaluate. This phase computes the starting time of each mark unit
listed in the animation keyframe table, based on the reference type
and delay time defined in the animation unit. Since each level of
the mark unit tree and each effect might have different reference
types and delay time, the computation is achieved by traversing the
mark unit tree in a depth-first order and processing the effect list
of each leaf node. After initializing the starting time of each mark
unit to 0, the duration of each mark unit is computed by processing
all the effects binding with it and then the starting time is refined
with the timing information on each level of the mark unit tree in a
bottom-up manner.

The keyframe table in Fig. 4(d) lists the start time of each effect
bounded to the keyframes. The delay between mark units on the

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

Haraware ‘
groupBy

product

Software Hardware Software Service
groupBy

area

ut u2 u3 ud us
sonvico NN 2 0008¢

COC BUNC BB)
0 100 200 300 400
Revenue (millions) mark2 . marks . markio .

M 2001 International Revenue 2001 Local Revenue
[l 2002 International Revenue 2002 Local Revenue
{

e . keyframe table
"animations": [{

"selector": ".rectangle", (TG
"grouping" i
"'groupBy’ product", Lz
"reference": "start after previous",)
"delay": 200, ut
"grouping": { ‘International,! e
"groupBy": "area"; "~ itocal g L
"“reference": "start after previous", .
delay": 100 mark unit table
} unit_id marks
1, ul mark1, mark2
"effects": [{ u2 mark3, mark4
“type": "wipe left", u3 mark5, marké
"duration": 300 u4 mark7, mark8
1 us markg, mark10
1 u6 mark11, mark12

}

(a) (b)

[r——

“type": "wipe left" keyframe table

unit_id effect_id duration(ms) start_time(s)
ul el 300 0
"attribute": "width", u2 el 300 0.4
"from" : 0, u3 el 300 0.9
“to" : 1,
ud el 300 1.3
“duration" : 300,
“"easing": "linear" u5 el 300 18
ub el 300 22
mark unit table
unit_id marks
keyframe table ut mark1, mark2
unit_id effect_id duration (ms) u2 mark3, mark4
ut el 300 u3 mark5, mark6
”§ 91 ggg ud mark7, mark8
:4 :1 300 us mark9, mark10
us o1 300 ué mark11, mark12
£ el 200 animation effect table
animation effect table effect_id channel from to easing
effect id channel from to easing el width 0.00 1.00 linear
el width 000 1.00 linear
mark channel table
mark channel table mark_id width
mark_id width mark1 100
mark1 100 mark2 147
mark2 147) 167
mark3 167 o 2
o = WEGE (=5
mark1 o7 mark11 o7
mark12 125 mark12 125
(©) (d)

Figure 4: [llustration of the build-bind-evaluate three steps with a grouped bar chart. (a) The input of the grouped bar chart and the unit
specification; (b) the build phase constructs the mark unit tree and updates the mark unit table and animation keyframe table; (c) the bind
phase associates the animation effect into the mark units and updates the animation effect table, mark channel table and animation keyframe
table; and (d) the evaluation phase computes the starting time of each effect listed in the keyframe table. Note that the involved information
for mask partitioning and animation effects are shown on yellow and green background, respectively.

second and third levels are 200ms and 100ms, respectively; and
the duration of each bar animation is 300 ms. Hence, the whole
animation lasts for 2.5s.

As for the specification with multiple views, each view has an
individual mark unit tree while different views have the same ani-
mation effects. To reduce the number of redundant representations,
we re-use the animation effect table for all views, while construct-
ing the other three tables for each view.

5.3. Translate

The Lottie specification describes an animation by defining how the
marks of the keyframes evolve over time. This is akin to the moti-
vation of constructing the four internal tables shown in Fig. 4, fa-
cilitating the translation from our specifications to the Lottie JSON
specifications. Thus, the transition can be done by taking each mark
as one object in Lottie and then assigning the corresponding prop-
erties in the keyframe table to the object. Since Lottie has its own
syntax and terminologies to describe animation, the properties in
the keyframe table will be translated to the corresponding Lottie
object properties. For example, we need to approximate the speci-
fied easing functions with Bessel curves in Lottie.

However, for visualizations of large data, the output Lottie spec-
ifications might be redundant, affecting the rendering performance.
The main reason is that most marks of the same type are differ-
ent in several attributes, while storing each of them with the full
specification is unnecessary. To produce a Lottie specification with

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

minimum size, we specify the graphical elements as reusable tem-
plates by using the Lottie reference mechanism. We introduce two
kinds of templates: i) static template including fonts, images, and
shapes; and ii) animated template which includes the mark and its
visual channel specifications over time. If the marks can be gen-
erated by applying affine transformations or adjusting opacities or
timestamps of such (animated) templates, they can also be speci-
fied by using the template with the transformations; otherwise, the
marks will be stored in the library and referred in the specification.
Taking the bar chart animation with the effect “wipe bottom” as an
example, the animation of different bars can be specified by one
template bar with the changes in scale and position. The effect of
this strategy in reducing the file size is evaluated in Section 6.2.

6. Evaluation

In this section, to demonstrate how Canis enables the specification
of expressive chart animations we first present a wide range of ex-
amples [RLBHR18]. We then evaluate its scalability by measuring
the output specification size and comparing the rendering perfor-
mance on different platforms against D3.

6.1. Examples

The expressivity of chart animations is determined by two orthog-
onal factors—visualizations and animations—and thus we choose
examples that reveal more variations in the design space. On the

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

bar.each(function () {

const datum = this._data_;

d3.select(this)
.attr('width', 0)
.transition()
.attr('width', x(datum.duration))
.duration(600 / minDuration * datum.duration
.delay(600 / minStart * datum.start)

"selector": ".text",
"effects": [{
"delay": {
"field": "start",
"minDelay": 600
I
"type": "wipe left",

b
“duration": 300 text.each(function () {

const datum = this._data_;
d3.select('defs').append('mask')
.attr('id', 'wipeMask' + i)
.append('rect")

.attr('x', 0)

.attr('y', 0)

.attr('width', 200)
.attr('height', 20)
.attr('fill', '#fff')
.transition()

.attr('x', 200)
.ease(d3.easelLinear)
.duration(300)

.delay(600 * datum.start);
.select(this)

.attr("mask", "url(#wipeMask" + i + ")");

(b)

o

"selector": ".bar"

"minDelay": 600

I

“type": "wipe left",

"duration": {
“field": "duration",
“minDuration”: 600

(a)

EVENT PLANING

06s

EVENT PLANING

EVENT PLANING EVENT PLANING

. -

24s
EVENT PLANING

48s
EVENT PLANING

I I
| [|
-> |

>

8.4s

()

10.8s

Figure 5: The animation of creating a Gantt chart designed by using Canis and D3. (a) The partial specification of Canis where two marks
“text” and “bar” are selected and specified with same effect but different timing parameters; (b) the partial specification of D3, where two
functions are provided for animating each type of marks; and (c) six snapshots of the animation, where the arrow indicates the text and bar
movement direction. Some chart titles and legends are partially occluded because of the overlap between snapshots.

one hand, our examples feature a variety of visualizations created
by D3, Vega-lite, and Charticulator. On the other hand, we choose
examples that cover Amini et al.’s [AHRL" 15] taxonomy of ani-
mation types, including creation/deconstruction, cycling, accumu-
lating, transition, drill-down and roll-up, annotations, and multi-
views. Since each chart animation might combine multiple types of
animations together, we systematically vary our examples in terms
of visualization types and animation types.

Specifically, we compare the conciseness (as a surrogate of
speed) of Canis with D3 by using the animations of three bar charts
variants and show the animations of multiple charts in the context
of storytelling. Complete specifications and animations of all ex-
amples can be found in the supplemental material. Note that D3
combines the chart creation and animation generation together and
thus it only requires to update data once the chart animation is set
up correctly. In contrast, the input of Canis can be the SVG charts
generate by any visualization tools.

6.1.1. Bar Charts

In this section, we demonstrate the effectiveness of Canis in author-
ing three variants of bar charts (grouped bar charts,*, Gantt chart,
and race bar charts) and compare its specifications again D3 exam-
ples for assessing authoring speed.

Gantt Chart. Fig. 5(c) shows snapshots of the creation animation
of the Gantt chart, where each bar illustrates the event timeline.
From the Canis specification in Fig. 5(a), we can see that the marks
of text and bar are selected and are associated with the same effect
“wipe left.” Since the reference parameter is omitted, the anima-
tions of these two types of marks start at the same time. The delay

! Due to the limited space, we put the the grouped bar chart example in the
supplemental material.

Top 10 Best Global Brands Ranking Top 10 Best Global Brands Ranking

{ I 17>+ o A o126
nselectors .mark”, o N 7505 .
EHEES (i « (A8 72965 o] 7:235

{ “type": g Google 68528 Googlel 74775
"magxc move", . Microsofl| 57956 . Microsoft 58216
“duration": o INGE 43609 o 44383
1000 Medonald's 39690 Medonald's 40475
) w—asm(A 00 B
1 = 0 (O (g, — I
- 2 . ~ IR 31367 2013

(a)

9.9s 10.2s

(b)

Figure 6: Authoring the bar chart race animation with the input of
multiple data-enriched bar charts by using Canis. (a) The partial
specification; and (b) two consecutive snapshots of the animations.

amounts of both marks are determined by the quantitative data at-
tribute start, indicting that two marks encoded by the same data
item have the same delay. Likewise, the animation duration of each
bar is determined by the data attribute duration, which helps
users to perceive how an event proceeds.

Fig. 5(b) shows the corresponding D3 specification, where two
functions are provided for animating both types of marks. We can
see that users not only need to manually build the relationship be-
tween the timing parameters and data attributes of the animation,
but also have to carefully use SVG mask to animate the text. Here,
arectangular mask is created for each text mark and its x position is
changed over time to achieve the effect “wipe left.” In contrast, with
Canis, user does not deal with implementation details, where users
only need to specify the animation effects to the selected marks.

Race Bar Charts. Canis also enables the animated transition be-
tween multiple charts. Taking multiple ranked bar charts as the in-
put, users can specify a bar chart race animation with the effect
“magic move” (see Fig. 6), corresponding to the cycling animation
in DataClips. As shown in Fig. 6(a), all types of marks are selected:
icons, bars, text, logo and year, which are animated at the same time
with “magic move.” Since different types of marks need to change

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

Doughnut Purchases 1996-2010
$9500 IsEdik

58000

57000

56500 56500 36500
551

Surface ,

7 e Scaly
52900

ebay Motocycle Sales

Surface ,

IsEdible MEdible M Poisonoy IsEdible WEdible mP IsEdible WEdible W

IsEdible w¢

...&

Surface ,
Surface ,
Surface ,

%0 B M % s B oM o &

| Mobile Operating System Market Share

"

sbay Motocycle Sales
in Ohio

Figure 7: Sequences of multiple snapshots of chart animations for four chart types—(a) line chart; (b) faceted dot plot; (c) map; and (d)
custom chart—showing the expressiveness of Canis, where the snapshots of each animation includes the first and last frames. The complete
specification and animations and more examples can be found in the supplemental material.

different visual properties to achieve this effect, their parsed “cus-
tom” animation effects are also different. Fig. 6(b) shows two con-
secutive snapshots of this animation, where the position and length
of the “Apple” bar both are changed from 2012 to 2013, while the
SVG icon is completely updated.

6.1.2. Other Chart Types

To further demonstrate the expressivity, we create a variety of
animations with a diverse collection of input data-enriched SVG
charts. Due to the limited space, we only show the snapshots of
four animations in Fig. 7 and provide more examples in the supple-
mental material.

Line Charts. Annotation is an essential element in conveying key
points in visual data-driven storytelling. Fig. 7(a) illustrates an an-
imation of an annotated line chart with four snapshots. Key points
and their corresponding annotations appear with the “fade in” effect
while the line grows steadily at the same time. The synchronization
between the animations of these two types of marks are achieved
by setting the duration and delay of the “fade in” effect as 200ms
and 400ms, and the duration of the “growing” effect 600ms.

Faceted Dot Plots. A custom chart layout facilitates the expres-
sive visualization authoring. Fig. 2(a) shows a faceted dot plots us-
ing circle packing sub-layout. To animate the creation of this scat-
terplot, we partition all marks with three data attributes (Odor,
Surface and IsEdible) and bind each mark unit with the
“fade” effect, see the specification in Fig. 2(b). By setting the ref-
erence term to “start after previous,” the mark units in the first row
appear first and then the ones in the second row.Fig. 7(b) illustrates
this animation with five snapshots.

Maps. The drill-down animation [AHRL*16] is used for transi-
tioning from a subset of marks in the input chart to another visual-
ization, which provides more detailed information. Fig. 7(c) shows

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

an example with four snapshots, where the first frame depicts the
eBay sales number of motorcycles at each state and the pie chart
in the last frame shows the percentages of motorcycles used for
different purposes in Ohio.

Bespoke Charts. Here, we apply Canis to specify animations for
a bespoke chart created with Charticulator [RLB18]. In this exam-
ple, the input chart is the last snapshot shown in Fig. 7(d). It visual-
izes the share values of the yearly mobile operating system market,
where the values of these systems for each year are encoded by
a normalized stacked bar chart. Since the bars of each system are
connected by bands, the band crossing indicates a rank change. To
illustrate how such rank changes over years, we specify an anima-
tion that creates the bars and bands of each system year by year and
gradually adds the marks of different systems to the chart. Fig. 7(d)
shows four snapshots of this animation, where the creation of these
systems follows their order in the stacked bar chart of the year 2009.

6.2. Scalability

To evaluate the scalability of Canis in animating the charts of large
data, we measure the output Lottie specification sizes and frame
rates during rendering different Lottie specifications on multiple
platforms. For completeness, we perform two comparisons by : i)
computing the compression ratios between the output specification
sizes generated with and without template-based translation and ii)
measuring the performances (in fps) of rendering our output speci-
fications and D3 counterparts.

Setting. Since Lottie specifications can be run natively on desk-
top, web and mobile devices, we compare the performances of five
versions: Lottie web (desktop), Lottie native (mobile), Lottie web
(mobile), D3 (desktop) and D3 (mobile). The desktop test is on
a Intel Core i5-8400 CPU, 8GB memory, and NVIDIA GeForce

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

GTX 1060 card with Windows 10 operating system, while the mo-
bile test was on an iPhone 7 with iOS 13.2.3 system, a 2.34GHz
quad-core Apple A10 Fusion processor, 2GB RAM memory and
the Safari web browser.

Animations. The tested animations are designed in terms of
changing different visual channels, such as length, position, and
color and we selected three types of charts—bar charts, line charts,
and scatterplots—as the input. For each type of charts, we randomly
generated 10 charts with varying number of marks from 100 to 10k,
where the height or position of marks in each chart are randomly
decided. For the bar charts and line charts, all marks are animated at
the same time with the effects “wipe bottom” and “fade in,” while
the points in scatterplots are moved from one position to another
random position with the effect “magic move.”

Results. Fig. 8(a) shows two snapshots for each type of speci-
fied animations with one input chart. For each chart, we compute
the compression ratios of the corresponding specifications resulted
by the template-based translation. Fig. 8(b) summarizes the results
with the boxplots, where the compression ratio is between 3.9 and
5.3 for all charts. We can see that our compiler largely reduces the
output Lottie specification size.

Since the rendering performances of all three animations are
similar, we only show the frame rate curves of the line chart an-
imations for five settings in Fig. 8(c). We can see that the frame
rates of all settings gradually decreases with the increasing number
of marks. However, D3 is not able to render the animation over 2k
marks on the mobile web, whereas D3 (mobile) becomes unrespon-
sive when rendering more than 2K marks thus its curve stops early.
D3 (desktop) performs similarly with the Lottie web (mobile) as
the number of lines is larger than 6K, whereas Lottie web (desk-
top) is the best. Moreover, the Lottie native renders 1.5 ~ 2 times
faster than the Lottie web.

Based on these results along with more tested results on addi-
tional platforms provided in the supplemental materials, we con-
clude that our compiled Lottie specifications are more scalable with
smaller sizes, and can be natively rendered with better performance
on multiple platforms.

7. Discussion and Future Work

Canis requires the pre-processing step that binds data into SVG
charts. By adding three properties “id” (index), “class” (SVG ele-
ment type), and “datum” (associated data) for each mark, we can
select all visual marks to generate data-driven animations. This
means that Canis can be applied to any charts created by existing
chart construction tools as long as they can be enriched with data.
For the charts created with D3 [BOH11], Vega-lite [SMWH16],
and Charticulator [RLB18], because they organize the graphical
primitives into a scene graph, we built indices for each leaf node
and added an SVG element type information into the id and class
attributes while rendering the visualization.

Canis separates the animation creation step from the chart cre-
ation step, and animates marks in terms of data attributes in one

T A A

/ ‘
o %
& o ®
~ ~ R ® ° 0

ao
o

o
S
a
3
—

—e— Lottie native (mobile)

Lottie web (desktop) Lottie web (mobile)

o . .
= 5.0 a0\ D3 (desktop) D3 (mobile)
4 \
§ \
w46 . Eaol |\
4 - \.
: = T N
842 — \
= N
. 10 N

—e——%

w

®
I
|

|
]

dot 2k 4k 6k 8k 10k
Number of Lines

(c)

bar line
Mark Type

(b)
Figure 8: (a) The two snapshots of three types of animations; (b)
the boxplots showing the compression ratios for the specifications
of three types of animations; and (c) the frame rate curves of the
line charts animations under five rendering settings with the in-
creasing number of lines.

or more charts. In some cases, this requires more effort for creat-
ing chart animations compared to existing libraries. Fig. 6 is such a
case, where Canis requires n bar charts (one for each time point),
whereas D3 and ggplot can use a transition operator to create ani-
mations, requiring only the data to be updated.

Canis is the first step in enabling declarative specifications of
chart animations. It would be informative to conduct a user study
to learn how easy it is to use and further improve its grammar
based on the feedback. In addition, it would be useful to extend
Canis with more animation effects, such as the multi-stages tran-
sitions [HRO7, KCH19], and optimize the Lottie renderer to im-
prove the performances of rendering data-driven chart animations.
We also would like to extend Canis to support another types of vi-
sualizations such as node-like graphs and word clouds, where pro-
cedural animations techniques (e.g., rigid body dynamics) [Par12]
might be required to simulate the movement of visual marks.

Even though the Canis specification is simpler than D3 code (as
shown in Section 6), it still requires basic programming knowl-
edge. On the other hand, Canis can be used as a building block
for interactive tools for authoring chart animations. We plan to de-
sign and develop an interactive tool with Canis so that designers
without programming skills can create data-driven chart animations
without writing any code. Canis uses a partition operator to gener-
ate keyframes for sequencing animations. This top-down approach
requires designers to clearly know how to organize all low-level
marks in terms of data patterns. This means that the designers need
to be able to find proper data attributes for partitioning. In contrast,
the bottom-up approach used in chart construction [MHN17] starts
from the mark level, which is more accessible to non-experts. We
would like to explore the possibility of combining both approaches
together for improving efficiency.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

Ge et al. / Canis: A High-Level Language for Data-Driven Chart Animations

Acknowledgements

This work is supported in part by the grants of the National Key
Research & Development Plan of China (2016YFB1001404) and
NSFC (61772315, 61861136012).

References

[Adoa] ADOBE STOCK: Adobe stock. https://stock.adobe.
com. [Online; accessed 6-April-2020]. 2

[Adob] ADOBEAFTEREFFECTS CC: Adobe after effects. https://
www.adobe.com/products/aftereffects.html. [Online;
accessed 6-April-2020]. 1, 2

[AHRL*15] AMINI F., HENRY RICHE N., LEE B., HURTER C., IRANI
P.: Understanding data videos: Looking at narrative visualization
through the cinematography lens. In Proc. SIGCHI Conference on Hu-
man Factors in Computing Systems (2015), pp. 1459-1468. 4, 8

[AHRL*16] AMINI F., HENRY RICHE N., LEE B., MONROY-
HERNANDEZ A., IRANI P.: Authoring data-driven videos with dataclips.
IEEE Transactions Visualization and Computer Graphics 23, 1 (2016),
501-510. 1,2,3,9

[Aira] AIRBNB: Lottie docs. https://airbnb.io/lottie. [On-
line; accessed 6-April-2020]. 1,2, 3, 4

[Airb] AIRBNB: Lottie editor. https://lottiefiles.com/
editor. [Online; accessed 6-April-2020]. 4

[APP10] ARCHAMBAULT D., PURCHASE H., PINAUD B.: Animation,
small multiples, and the effect of mental map preservation in dynamic
graphs. IEEE Transactions Visualization and Computer Graphics 17, 4
(2010), 539-552. 1,3

[BHO9] BOSTOCK M., HEER J.: Protovis: A graphical toolkit for visual-
ization. IEEE Transactions Visualization and Computer Graphics 15, 6
(2009), 1121-1128. 2

[BLIC19] BREHMER M., LEE B., ISENBERG P., CHOE E. K.: A com-
parative evaluation of animation and small multiples for trend visualiza-
tion on mobile phones. IEEE Transactions Visualization and Computer
Graphics 26, 1 (2019), 364-374. 1,3

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 data-driven
documents. IEEE Transactions Visualization and Computer Graphics
17,12 (2011), 2301-2309. 2, 3, 4, 10

[CDF14] CHEVALIER F., DRAGICEVIC P., FRANCONERI S.: The not-
so-staggering effect of staggered animated transitions on visual tracking.
IEEE Transactions Visualization and Computer Graphics 20, 12 (2014),
2241-2250. 3,4

[DBJ*11] DRAGICEVIC P., BEZERIANOS A., JAVED W., ELMQVIST
N., FEKETE J.-D.: Temporal distortion for animated transitions. In
Proc. SIGCHI Conference on Human Factors in Computing Systems
(2011), pp. 2009-2018. 3

[EBR14] EISENBERG J. D., BELLAMY-ROYDS A.: SVG Essentials:
Producing Scalable Vector Graphics with XML. O’Reilly Media, Inc.,
2014. 4

[GBTS13] GRAMMEL L., BENNETT C., TORY M., STOREY M.-A. D.:
A survey of visualization construction user interfaces. In EuroVis (Short
Papers) (2013), Citeseer. 2

[HA14] HARPER J., AGRAWALA M.: Deconstructing and restyling d3
visualizations. In Proceedings of the 27th annual ACM symposium on
User interface software and technology (2014), pp. 253-262. 3

[HEN] HENRI:
web & mobile.

40 javascript ui animation libraries for
https://bashooka.com/coding/

[HRO7] HEER J., ROBERTSON G.: Animated transitions in statistical
data graphics. IEEE Transactions Visualization and Computer Graphics
13,6 (2007), 1240-1247. 3,5, 10

[KCH19] KiM Y., CORRELL M., HEER J.: Designing animated transi-
tions to convey aggregate operations. Computer Graphics Forum 38, 3
(2019), 541-551. 10

[Key] KEYSHAPE: Keyshape features. https://www.
keyshapeapp . com. [Online; accessed 6-April-2020]. 4

[Kir] KIRK A.: Home - visualising data. https://www.
visualisingdata.com. [Online; accessed 6-April-2020]. 1

[Kis15] KISSELL J.: Take control of Keynote. TidBITS Publ., 2015. 5

[Ltd] LtD. K. E.: Flourish. https://flourish.studio. [Online;
accessed 6-April-2020]. 1, 2

[LTW*18] Liu Z., THOMPSON J., WILSON A., DONTCHEVA M., DE-
LOREY J., GRIGG S., KERR B., STASKO J.: Data illustrator: Augment-
ing vector design tools with lazy data binding for expressive visualization
authoring. In Proc. SIGCHI Conference on Human Factors in Comput-
ing Systems (2018), p. 123. 3

[MHN17] MENDEZ G. G., HINRICHS U., NACENTA M. A.: Bottom-
up vs. top-down: trade-offs in efficiency, understanding, freedom and
creativity with infovis tools. In Proc. SIGCHI Conference on Human
Factors in Computing Systems (2017), ACM, pp. 841-852. 10

[Par12] PARENT R.: Computer animation: algorithms and techniques.
Newnes, 2012. 10

[PR] PEDERSEN T. L., ROBINSON D.: A grammar of animated graphics
| gganimate. https://gganimate.com. [Online; accessed 6-April-
2020]. 1,3

[RFF*08] ROBERTSON G., FERNANDEZ R., FISHER D., LEE B.,
STASKO J.: Effectiveness of animation in trend visualization. [/EEE
Transactions Visualization and Computer Graphics 14, 6 (2008), 1325-
1332. 1,3

[RLB18] REND., LEE B., BREHMER M.: Charticulator: Interactive con-
struction of bespoke chart layouts. IEEE Transactions Visualization and
Computer Graphics 25, 1 (2018), 789-799. 9, 10

[RLBHRI18] REN D., LEE B., BREHMER M., HENRY RICHE N.: Re-
flecting on the evaluation of visualization authoring systems: Position pa-
per. In 2018 IEEE Evaluation and Beyond-Methodological Approaches
for Visualization (BELIV) (2018), IEEE, pp. 86-92. 7

[RLH17] REN D., LEE B., HOLLERER T.: Stardust: Accessible and
transparent gpu support for information visualization rendering. Com-
puter Graphics Forum 36, 3 (2017), 179-188. 3

[RZ10] RISCHPATER R., ZUCKER D.: Introducing qt quick. In Begin-
ning Nokia Apps Development (2010), Springer, pp. 139-158. 2

[SMWHI16] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE Transac-
tions Visualization and Computer Graphics 23, 1 (2016), 341-350. 1, 2,
10

[SRHH15] SATYANARAYAN A., RUSSELL R., HOFFSWELL J., HEER
J.: Reactive vega: A streaming dataflow architecture for declarative in-
teractive visualization. IEEE Transactions Visualization and Computer
Graphics 22, 1 (2015), 659-668. 1, 2

[TMBO02] TVERSKY B., MORRISON J. B., BETRANCOURT M.: Anima-
tion: can it facilitate? International journal of human-computer studies
57,4 (2002), 247-262. 3, 6

[Wicl0] WICKHAM H.: A layered grammar of graphics. Journal of Com-
putational and Graphical Statistics 19, 1 (2010), 3-28. 2, 3

[Wil99] WILKINSON L.: The grammar of graphics. In Handbook of
Computational Statistics. Springer, 1999. 2

40-javascript-ui-animation-libraries-for-web-mobile. [Yau] YAU N.: Flowingdata. http://www.flowingdata.com.

[Online; accessed 6-April-2020]. 2

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

[Online; accessed 6-April-2020]. 1

https://stock.adobe.com
https://stock.adobe.com
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/aftereffects.html
https://airbnb.io/lottie
https://lottiefiles.com/editor
https://lottiefiles.com/editor
https://bashooka.com/coding/40-javascript-ui-animation-libraries-for-web-mobile
https://bashooka.com/coding/40-javascript-ui-animation-libraries-for-web-mobile
https://www.keyshapeapp.com
https://www.keyshapeapp.com
https://www.visualisingdata.com
https://www.visualisingdata.com
https://flourish.studio
https://gganimate.com
http://www.flowingdata.com

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	anm1:

